论文标题

从偏见的隐式反馈中进行双边自我态度学习

Bilateral Self-unbiased Learning from Biased Implicit Feedback

论文作者

Lee, Jae-woong, Park, Seongmin, Lee, Joonseok, Lee, Jongwuk

论文摘要

隐式反馈已被广泛用于构建商业推荐系统。因为观察到的反馈代表用户的点击日志,所以真实相关性和观察到的反馈之间存在语义差距。更重要的是,观察到的反馈通常会偏向流行项目,从而高估了流行项目的实际相关性。尽管现有的研究使用反向倾向加权(IPW)或因果推理开发了公正的学习方法,但它们仅专注于消除项目的受欢迎程度偏见。在本文中,我们提出了一种新型的无偏见的推荐学习模型,即双边自我非偏见的推荐剂(Biser),以消除推荐模型引起的项目的暴露偏见。具体而言,双方由两个关键组成部分组成:(i)自我内向倾向加权(SIPW)逐渐减轻项目的偏见而不会产生高计算成本; (ii)双边无偏学习(BU)在模型预测(即基于用户和项目的自动编码器)中弥合两个互补模型之间的差距,从而减轻了SIPW的较高差异。广泛的实验表明,Biser在几个数据集上始终优于最先进的无偏建议型号,包括外套,Yahoo! R3,Movielens和Citeulike。

Implicit feedback has been widely used to build commercial recommender systems. Because observed feedback represents users' click logs, there is a semantic gap between true relevance and observed feedback. More importantly, observed feedback is usually biased towards popular items, thereby overestimating the actual relevance of popular items. Although existing studies have developed unbiased learning methods using inverse propensity weighting (IPW) or causal reasoning, they solely focus on eliminating the popularity bias of items. In this paper, we propose a novel unbiased recommender learning model, namely BIlateral SElf-unbiased Recommender (BISER), to eliminate the exposure bias of items caused by recommender models. Specifically, BISER consists of two key components: (i) self-inverse propensity weighting (SIPW) to gradually mitigate the bias of items without incurring high computational costs; and (ii) bilateral unbiased learning (BU) to bridge the gap between two complementary models in model predictions, i.e., user- and item-based autoencoders, alleviating the high variance of SIPW. Extensive experiments show that BISER consistently outperforms state-of-the-art unbiased recommender models over several datasets, including Coat, Yahoo! R3, MovieLens, and CiteULike.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源