论文标题

通过马尔可夫反馈控制在光学晶格中的热传输

Heat transport in an optical lattice via Markovian feedback control

论文作者

Wu, Ling-Na, Eckardt, André

论文摘要

Ultracold Atoms提供了一个独特的机会,可以在干净且控制良好的环境中研究多体物理学。但是,量子气的孤立性质使研究系统的运输特性很难,这是凝结物理学中的关键可观察物。在这项工作中,我们采用马尔可夫反馈控制来合成两个有效的热浴,这些热浴将融合到一维bose-Hubbard链的边界。这允许实现携带热电流的状态。我们研究了稳态热电流,包括其系统尺寸的扩展及其对疾病的反应。为了研究大型系统,我们使用半古典的蒙特卡洛模拟和动力学理论。正如预期的那样,两种方法的数值结果都表明,对于有或没有障碍的非相互作用的系统,与系统尺寸相对于系统尺寸的系统尺寸与与热浴相关的系统相对于系统尺寸的比例相同。最后,我们提出并测试一种用于测量能量的方案。因此,我们为原子量子气体中物质携带物质的稳态量子模拟提供了途径。

Ultracold atoms offer a unique opportunity to study many-body physics in a clean and well-controlled environment. However, the isolated nature of quantum gases makes it difficult to study transport properties of the system, which are among the key observables in condensed matter physics. In this work, we employ Markovian feedback control to synthesize two effective thermal baths that couple to the boundaries of a one-dimensional Bose-Hubbard chain. This allows for the realization of a heat-current-carrying state. We investigate the steady-state heat current, including its scaling with system size and its response to disorder. In order to study large systems, we use semi-classical Monte-Carlo simulation and kinetic theory. The numerical results from both approaches show, as expected, that for non- and weakly interacting systems with and without disorder one finds the same scaling of the heat current with respect to the system size as it is found for systems coupled to thermal baths. Finally, we propose and test a scheme for measuring the energy flow. Thus, we provide a route for the quantum simulation of heat-current-carrying steady states of matter in atomic quantum gases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源