论文标题

数据驱动的建模社交媒体使用微分方程的影响

Data Driven Modeling Social Media Influence using Differential Equations

论文作者

Jin, Bailu, Guo, Weisi

论文摘要

个人根据他们的社交互动来修改对主题的看法。意见进化模型概念化了意见的变化为单位连续性,并且影响力的效果是由小组规模,网络结构或小组中观点之间的关系构建的。但是,如何在在线社会影响力作为功能的影响下建模个人意见进化过程尚不清楚。在这里,我们表明,可以通过压缩的高维单词嵌入来表示单维连续的用户意见,并且可以通过反映社交网络影响者相互作用的普通微分方程(ODE)来准确地建模其演化。我们的三个主要贡献是:(1)引入数据驱动的管道,该管道代表了时间内核的个人意见演变,(2)基于先前的心理学模型,我们使用普通的微分方程将意见演化过程与在线社会影响的函数建模,(3)将我们的意见进化模型应用于实时Twitter数据。我们对87位活跃用户进行分析,这些用户在2020年至2022年对COVID-19主题上的相应影响者进行分析。回归结果表明,量化意见中99%的变化可以通过我们对其影响者的连接意见进行建模的方式来解释。我们对COVID-19主题的研究以及对所分析的帐户的研究表明,社交媒体用户主要根据他们遵循的影响者(例如,模型解释了99%的变化)和长期规模上的意见自我进化是有限的。

Individuals modify their opinions towards a topic based on their social interactions. Opinion evolution models conceptualize the change of opinion as a uni-dimensional continuum, and the effect of influence is built by the group size, the network structures, or the relations among opinions within the group. However, how to model the personal opinion evolution process under the effect of the online social influence as a function remains unclear. Here, we show that the uni-dimensional continuous user opinions can be represented by compressed high-dimensional word embeddings, and its evolution can be accurately modelled by an ordinary differential equation (ODE) that reflects the social network influencer interactions. Our three major contributions are: (1) introduce a data-driven pipeline representing the personal evolution of opinions with a time kernel, (2) based on previous psychology models, we model the opinion evolution process as a function of online social influence using an ordinary differential equation, and (3) applied Our opinion evolution model to the real-time Twitter data. We perform our analysis on 87 active users with corresponding influencers on the COVID-19 topic from 2020 to 2022. The regression results demonstrate that 99% of the variation in the quantified opinions can be explained by the way we model the connected opinions from their influencers. Our research on the COVID-19 topic and for the account analysed shows that social media users primarily shift their opinion based on influencers they follow (e.g., model explains for 99% variation) and self-evolution of opinion over a long time scale is limited.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源