论文标题

通过对比度学习利用基于内容的音乐建议中的负面偏好

Exploiting Negative Preference in Content-based Music Recommendation with Contrastive Learning

论文作者

Park, Minju, Lee, Kyogu

论文摘要

正在引入高级音乐推荐系统以及机器学习的开发。但是,必须设计一个可以通过了解用户的音乐口味而不是模型的复杂性来提高用户满意度的音乐推荐系统。尽管与音乐推荐系统相关的一些研究表明了绩效的提高,但缺乏解释如何导致更好的建议。在这项工作中,我们通过将音乐推荐模型与对比度学习利用偏好(CLEP)进行比较,分析了负面偏好在用户音乐品味中的作用,但是使用三种不同的培训策略 - 利用正面和负面(CLEP-PN),仅阳性(CLEP-P)的偏好(CLEP-P),仅是负面的(CLEP-N)。我们通过用少量通过调查获得的少量个性化数据来验证每个系统的有效性,并进一步阐明了在音乐建议中利用负面偏好的可能性。我们的实验结果表明,CLEP-N在准确性和假阳性速率上胜过其他两个。此外,所提出的培训策略都会产生一致的趋势,无论前端音乐提取器不同,证明了所提出的方法的稳定性。

Advanced music recommendation systems are being introduced along with the development of machine learning. However, it is essential to design a music recommendation system that can increase user satisfaction by understanding users' music tastes, not by the complexity of models. Although several studies related to music recommendation systems exploiting negative preferences have shown performance improvements, there was a lack of explanation on how they led to better recommendations. In this work, we analyze the role of negative preference in users' music tastes by comparing music recommendation models with contrastive learning exploiting preference (CLEP) but with three different training strategies - exploiting preferences of both positive and negative (CLEP-PN), positive only (CLEP-P), and negative only (CLEP-N). We evaluate the effectiveness of the negative preference by validating each system with a small amount of personalized data obtained via survey and further illuminate the possibility of exploiting negative preference in music recommendations. Our experimental results show that CLEP-N outperforms the other two in accuracy and false positive rate. Furthermore, the proposed training strategies produced a consistent tendency regardless of different types of front-end musical feature extractors, proving the stability of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源