论文标题

从触觉游戏中学习动态操纵技巧

Learning Dynamic Manipulation Skills from Haptic-Play

论文作者

Lee, Taeyoon, Sung, Donghyun, Choi, Kyoungyeon, Lee, Choongin, Park, Changwoo, Choi, Keunjun

论文摘要

在本文中,我们提出了一种数据驱动的技能学习方法,以完全从离线远程处理的播放数据完全求解高度动态的操纵任务。我们使用双边远程操作系统连续收集一大批灵敏和敏捷的操纵行为,通过向操作员提供直接的力反馈来实现。我们以目标条件条件的政策和技能条件状态过渡动态的形式共同学习了状态潜在的潜在技能分布和技能解码器网络。这允许人们在学习的技能空间中执行基于模型的在线和离线计划方法的强大计划,以在测试时完成任何给定的下游任务。我们提供模拟和现实世界的双臂操纵实验,表明可以实时组成一系列力控制的动态操纵技能,以成功地将框配置为随机选择的目标位置和方向;请参阅补充视频,https://youtu.be/la5b236ilzm。

In this paper, we propose a data-driven skill learning approach to solve highly dynamic manipulation tasks entirely from offline teleoperated play data. We use a bilateral teleoperation system to continuously collect a large set of dexterous and agile manipulation behaviors, which is enabled by providing direct force feedback to the operator. We jointly learn the state conditional latent skill distribution and skill decoder network in the form of goal-conditioned policy and skill conditional state transition dynamics using a two-stage generative modeling framework. This allows one to perform robust model-based planning, both online and offline planning methods, in the learned skill-space to accomplish any given downstream tasks at test time. We provide both simulated and real-world dual-arm box manipulation experiments showing that a sequence of force-controlled dynamic manipulation skills can be composed in real-time to successfully configure the box to the randomly selected target position and orientation; please refer to the supplementary video, https://youtu.be/LA5B236ILzM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源