论文标题
MarkerMap:单细胞研究的非线性标记选择
MarkerMap: nonlinear marker selection for single-cell studies
论文作者
论文摘要
单细胞RNA-seq数据允许在不断增长的一组生物环境中定量细胞类型差异。但是,指出了一小部分基因组特征来解释这种变异性可能是不明显的,并且在计算上很棘手。在这里,我们介绍了MarkerMap,这是一种用于选择最小基因集的生成模型,这些基因集对细胞类型的起源提供了最大信息,并启用了整个转录组重建。 Markermap为旨在识别特定细胞类型种群的监督标记选择提供了可扩展的框架,以及旨在基因表达插补和重建的无监督标记选择。我们基于Markermap在实际单细胞基因表达数据集的先前发表的方法中基于竞争性能。 MarkerMap可作为可安装的PIP软件包使用,可作为旨在开发可解释的机器学习技术的社区资源,以增强单细胞研究中的可解释性。
Single-cell RNA-seq data allow the quantification of cell type differences across a growing set of biological contexts. However, pinpointing a small subset of genomic features explaining this variability can be ill-defined and computationally intractable. Here we introduce MarkerMap, a generative model for selecting minimal gene sets which are maximally informative of cell type origin and enable whole transcriptome reconstruction. MarkerMap provides a scalable framework for both supervised marker selection, aimed at identifying specific cell type populations, and unsupervised marker selection, aimed at gene expression imputation and reconstruction. We benchmark MarkerMap's competitive performance against previously published approaches on real single cell gene expression data sets. MarkerMap is available as a pip installable package, as a community resource aimed at developing explainable machine learning techniques for enhancing interpretability in single-cell studies.