论文标题

开放世界学习图卷积,用于路由网络中的延迟估算

Open World Learning Graph Convolution for Latency Estimation in Routing Networks

论文作者

Jin, Yifei, Daoutis, Marios, Girdzijauskas, Sarunas, Gionis, Aristides

论文摘要

准确的路由网络状态估计是软件定义网络中的关键组件。但是,现有的基于深度学习的方法来建模网络路由无法推断出看不见的特征分布。他们也无法在包括开放世界输入的测试集中处理缩放和漂移的网络属性。为了应对这些挑战,我们提出了一种使用图神经网络来建模网络路由的新方法。我们的方法也可以用于网络延迟估计。在域知识辅助图公式的支持下,我们的模型在路由网络的不同网络大小和配置上共享稳定的性能,同时也能够朝着看不见的大小,配置和用户行为来推断。我们表明,就预测准确性,计算资源,推理速度以及对开放世界输入的推广能力,我们的模型优于大多数传统的基于深度学习的模型。

Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes in test sets that include open-world inputs. To deal with these challenges, we propose a novel approach for modeling network routing, using Graph Neural Networks. Our method can also be used for network-latency estimation. Supported by a domain-knowledge-assisted graph formulation, our model shares a stable performance across different network sizes and configurations of routing networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that our model outperforms most conventional deep-learning-based models, in terms of prediction accuracy, computational resources, inference speed, as well as ability to generalize towards open-world input.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源