论文标题
Alphavc:高性能和高效学的视频压缩
AlphaVC: High-Performance and Efficient Learned Video Compression
论文作者
论文摘要
最近,学习的视频压缩引起了很多关注,并以有希望的结果显示了快速发展趋势。但是,先前的作品仍然存在一些批评问题,并且在广泛使用的PSNR度量方面,具有传统压缩标准的性能差距。在本文中,我们提出了几种技术来有效提高性能。首先,为了解决累积错误的问题,我们将有条件的I框架作为GOP中的第一个框架,该框架稳定了重建的质量并节省了比特率。其次,为了有效地提高相互预测的准确性而不增加解码器的复杂性,我们提出了一种像素到功能的运动预测方法,可以帮助我们获得高质量的运动信息。第三,我们提出了一种基于概率的熵跳过方法,该方法不仅带来了性能增长,而且大大降低了熵编码的运行时。借助这些强大的技术,本文提出了Alphavc,这是一种高性能且高效的学习视频压缩方案。据我们所知,AlphaVC是第一个E2E AI编解码器,它超过了PSNR(-28.2%BD率节省)和MSSSIM(-52.2%BD储蓄)的所有常见测试数据集上的最新压缩标准VVC,并且具有非常快的编码(0.001x VVC)和DECODED(1.69xVC)。
Recently, learned video compression has drawn lots of attention and show a rapid development trend with promising results. However, the previous works still suffer from some criticial issues and have a performance gap with traditional compression standards in terms of widely used PSNR metric. In this paper, we propose several techniques to effectively improve the performance. First, to address the problem of accumulative error, we introduce a conditional-I-frame as the first frame in the GoP, which stabilizes the reconstructed quality and saves the bit-rate. Second, to efficiently improve the accuracy of inter prediction without increasing the complexity of decoder, we propose a pixel-to-feature motion prediction method at encoder side that helps us to obtain high-quality motion information. Third, we propose a probability-based entropy skipping method, which not only brings performance gain, but also greatly reduces the runtime of entropy coding. With these powerful techniques, this paper proposes AlphaVC, a high-performance and efficient learned video compression scheme. To the best of our knowledge, AlphaVC is the first E2E AI codec that exceeds the latest compression standard VVC on all common test datasets for both PSNR (-28.2% BD-rate saving) and MSSSIM (-52.2% BD-rate saving), and has very fast encoding (0.001x VVC) and decoding (1.69x VVC) speeds.