论文标题

法医车牌识别带有压缩信息的变压器

Forensic License Plate Recognition with Compression-Informed Transformers

论文作者

Moussa, Denise, Maier, Anatol, Spruck, Andreas, Seiler, Jürgen, Riess, Christian

论文摘要

法医车牌识别(FLPR)仍然是在法律环境中的公开挑战,例如刑事调查,在刑事调查中,不可读取的车牌(LPS)需要从高度压缩和/或低分辨率录像中解密,例如监视摄像机。在这项工作中,我们提出了一个侧面信息变压器体系结构,该结构嵌入了输入压缩级别的知识,以改善在强压缩下的识别。我们在低质量的现实数据集中显示了变压器对车牌识别(LPR)的有效性。我们还提供了一个合成数据集,其中包括强烈降级,难以辨认的LP图像并分析嵌入知识对其的影响。该网络的表现优于现有的FLPR方法和标准最先进的图像识别模型,同时需要更少的参数。对于最严重的降级图像,我们可以将识别提高多达8.9%。

Forensic license plate recognition (FLPR) remains an open challenge in legal contexts such as criminal investigations, where unreadable license plates (LPs) need to be deciphered from highly compressed and/or low resolution footage, e.g., from surveillance cameras. In this work, we propose a side-informed Transformer architecture that embeds knowledge on the input compression level to improve recognition under strong compression. We show the effectiveness of Transformers for license plate recognition (LPR) on a low-quality real-world dataset. We also provide a synthetic dataset that includes strongly degraded, illegible LP images and analyze the impact of knowledge embedding on it. The network outperforms existing FLPR methods and standard state-of-the art image recognition models while requiring less parameters. For the severest degraded images, we can improve recognition by up to 8.9 percent points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源