论文标题
对对称性受保护的I型SeeSAW中充电Lepton侵犯的全面分析
Comprehensive Analysis of Charged Lepton Flavour Violation in the Symmetry Protected Type-I Seesaw
论文作者
论文摘要
I型SEESAW模型可能是标准模型中最直接,最精心研究的扩展,该模型可以解释从中微子振荡数据确定的微小的主动中微子质量。在本文中,我们计算了该模型中违反带电的Lepton风味过程的完整一环校正集。我们使用中微子质量矩阵的精确对角线化以及SEESAW扩展中的领先顺序(即$ \ Mathcal {O}(v^2/m_r^2)$)给出结果。此外,我们在dimension-6级别上执行匹配(2)_l $不变标准模型有效现场理论。这些结果可以用作从右撇子中微子尺度到恢复物理过程的尺度的重量法化组进化的初始条件,从而恢复了较大的对数。在我们的数值分析中,我们研究了逆Seesaw极限,即受对称的受保护的I SeeSaw,其中Weinberg操作员的Wilson系数为零,因此可以允许使用较大的中微子Yukawas,并且在带电Lepton的Lepton avelative diakerative cobservables中是允许的。我们将不同充电的Lepton风味违反过程相关联,例如$ \ ell \ to \ ell^\primeγ$,$ \ ell \ to3 \ ell^\ prime $,$μ\ to e $转换,以及$ z \ to \ el \ ell \ ell \ ell^prime $,考虑到Electroweak Precision Precision observables和Lepton味道的测试中的约束。
The type-I seesaw model is probably the most straightforward and best studied extension of the Standard Model that can account for the tiny active neutrino masses determined from neutrino oscillation data. In this article, we calculate the complete set of one-loop corrections to charged lepton flavour violating processes within this model. We give the results both using exact diagonalisation of the neutrino mass matrix, and at at leading order in the seesaw expansion (i.e. $\mathcal{O}(v^2/M_R^2)$). Furthermore, we perform the matching onto the $SU(2)_L$ invariant Standard Model Effective Field Theory at the dimension-6 level. These results can be used as initial conditions for the renormalisation group evolution from the right-handed neutrino scale down to the scale of the physical processes, which resums large logarithms. In our numerical analysis, we study the inverse seesaw limit, i.e. the symmetry protected type-I seesaw, where the Wilson coefficient of the Weinberg operator is zero such that sizeable neutrino Yukawas are permissible and relevant effects in charged lepton flavour violating observables are possible. We correlate the different charged lepton flavour violating processes, e.g. $\ell\to\ell^\primeγ$, $\ell\to3\ell^\prime$, $μ\to e$ conversion and $Z\to \ell\ell^\prime$, taking into account the constraints from electroweak precision observables and tests of lepton flavour universality.