论文标题

在离散空间中增强基于梯度的MCMC

Enhanced gradient-based MCMC in discrete spaces

论文作者

Rhodes, Benjamin, Gutmann, Michael

论文摘要

最近介绍基于梯度的MCMC用于离散空间具有巨大的希望,并带来了新离散的可能性的诱人可能性,即MALA和HMC等著名的连续方法。为了实现这一目标,我们介绍了几个在概念上受到MALA启发的分离大都会杂货样本,并在贝叶斯推理和基于能量的建模中表现出了一系列具有挑战性的采样问题。从方法上讲,我们确定了为什么离散对预处理的MALA的离散类似物通常是棘手的,激发了我们基于辅助变量和“高斯积分技巧”引入一种新型的预处理。

The recent introduction of gradient-based MCMC for discrete spaces holds great promise, and comes with the tantalising possibility of new discrete counterparts to celebrated continuous methods such as MALA and HMC. Towards this goal, we introduce several discrete Metropolis-Hastings samplers that are conceptually-inspired by MALA, and demonstrate their strong empirical performance across a range of challenging sampling problems in Bayesian inference and energy-based modelling. Methodologically, we identify why discrete analogues to preconditioned MALA are generally intractable, motivating us to introduce a new kind of preconditioning based on auxiliary variables and the `Gaussian integral trick'.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源