论文标题

交替结的隆起猜想

The ropelength conjecture of alternating knots

论文作者

Diao, Yuanan

论文摘要

长期存在的猜想指出,任何交替结的ropeenthent至少与其交叉数量成正比。在本文中,我们证明了这个猜想是正确的。也就是说,存在一个常数$ b_0> 0 $,因此任何交替结$ k $的$ r(k)\ ge b_0cr(k)$,其中$ r(k)$是$ k $的ropelength,$ k $和$ cr(k)$是$ k $的交叉数。在本文中,我们证明了这个猜想是正确的。

A long standing conjecture states that the ropelength of any alternating knot is at least proportional to its crossing number. In this paper we prove that this conjecture is true. That is, there exists a constant $b_0>0$ such that $R(K)\ge b_0Cr(K)$ for any alternating knot $K$, where $R(K)$ is the ropelength of $K$ and $Cr(K)$ is the crossing number of $K$. In this paper, we prove that this conjecture is true.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源