论文标题

使用稀疏的在线高斯流程学习机器人逆动力学,并忘记机制

Learning robot inverse dynamics using sparse online Gaussian process with forgetting mechanism

论文作者

Li, Wei, Li, Zhiwen, Liu, Yiqi, Pan, Yongping

论文摘要

在线高斯流程(GPS)通常用于从时间序列数据中学习模型,比离线GPS更灵活,更健壮。 GPS的本地和稀疏近似都可以在线有效地学习复杂的模型。但是,这些方法假定所有信号都是相对准确的,并且所有数据都可以学习而无需误导数据。此外,在实践中,GP的在线学习能力受到高维问题和长期任务的限制。本文提出了一个稀疏的在线GP(SOGP),并具有忘记的机制,以特定的速度忘记了遥远的模型信息。所提出的方法结合了SOGP基础向量集的两个通用数据删除方案:基于位置信息的方案和最古老的基于点的方案。我们采用我们的方法来学习在任务切换的两部分轨迹跟踪问题下具有7度自由度的协作机器人的反动力学。模拟和实验都表明,与两种一般数据删除方案相比,所提出的方法可实现更好的跟踪准确性和预测平滑度。

Online Gaussian processes (GPs), typically used for learning models from time-series data, are more flexible and robust than offline GPs. Both local and sparse approximations of GPs can efficiently learn complex models online. Yet, these approaches assume that all signals are relatively accurate and that all data are available for learning without misleading data. Besides, the online learning capacity of GPs is limited for high-dimension problems and long-term tasks in practice. This paper proposes a sparse online GP (SOGP) with a forgetting mechanism to forget distant model information at a specific rate. The proposed approach combines two general data deletion schemes for the basis vector set of SOGP: The position information-based scheme and the oldest points-based scheme. We apply our approach to learn the inverse dynamics of a collaborative robot with 7 degrees of freedom under a two-segment trajectory tracking problem with task switching. Both simulations and experiments have shown that the proposed approach achieves better tracking accuracy and predictive smoothness compared with the two general data deletion schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源