论文标题
从开放式的角度来看,几乎没有类班级的学习
Few-Shot Class-Incremental Learning from an Open-Set Perspective
论文作者
论文摘要
在视觉世界中,新对象的不断出现对现实世界部署中当前的深度学习方法构成了巨大的挑战。由于稀有性或成本,新任务学习的挑战通常会加剧新类别的数据。在这里,我们探讨了几乎没有类班级学习(FSCIL)及其极端数据稀缺条件的重要任务。理想的FSCIL模型都需要在所有类别上表现良好,无论其显示顺序或数据的匮乏。开放现实世界的条件也需要健壮,并可以轻松地适应始终在现场出现的新任务。在本文中,我们首先重新评估当前的任务设置,并为FSCIL任务提出更全面和实用的设置。然后,受到FSCIL和现代面部识别系统目标的相似性的启发,我们提出了我们的方法 - 增强角损失渐进分类或爱丽丝。在爱丽丝(Alice)中,我们建议使用角罚损失损失以获得群集的特征。由于所获得的功能不仅需要紧凑,而且还需要多样化以维持将来的增量类别的概括,我们还会进一步讨论类增强,数据增强和数据平衡如何影响分类性能。在包括CIFAR100,Miniimagenet和Cub200在内的基准数据集上的实验证明了爱丽丝在最新的FSCIL方法上的性能提高。
The continual appearance of new objects in the visual world poses considerable challenges for current deep learning methods in real-world deployments. The challenge of new task learning is often exacerbated by the scarcity of data for the new categories due to rarity or cost. Here we explore the important task of Few-Shot Class-Incremental Learning (FSCIL) and its extreme data scarcity condition of one-shot. An ideal FSCIL model needs to perform well on all classes, regardless of their presentation order or paucity of data. It also needs to be robust to open-set real-world conditions and be easily adapted to the new tasks that always arise in the field. In this paper, we first reevaluate the current task setting and propose a more comprehensive and practical setting for the FSCIL task. Then, inspired by the similarity of the goals for FSCIL and modern face recognition systems, we propose our method -- Augmented Angular Loss Incremental Classification or ALICE. In ALICE, instead of the commonly used cross-entropy loss, we propose to use the angular penalty loss to obtain well-clustered features. As the obtained features not only need to be compactly clustered but also diverse enough to maintain generalization for future incremental classes, we further discuss how class augmentation, data augmentation, and data balancing affect classification performance. Experiments on benchmark datasets, including CIFAR100, miniImageNet, and CUB200, demonstrate the improved performance of ALICE over the state-of-the-art FSCIL methods.