论文标题
保护隐私的边缘缓存:一种概率方法
Privacy-Preserving Edge Caching: A Probabilistic Approach
论文作者
论文摘要
边缘缓存(EC)通过在边缘网络上缓存流行内容来减少最终用户的平均访问延迟,但是,它增加了诸如用户偏好之类的宝贵信息的泄漏概率。大多数现有的隐私保护方法都集中在添加加密层,这使网络面临更多挑战,例如能源和计算限制。我们采用基于块的关节概率缓存(JPC)方法来误导对EC内部的通信的对手,并在估计请求的文件和请求缓存时最大化对手的错误。在JPC中,我们优化了每个缓存位置的概率,以最大程度地降低通信成本,同时保证所需的隐私,然后将优化问题作为线性编程(LP)问题。由于JPC继承了维数的诅咒,因此我们还提出了可扩展的JPC(SPC),该jpc(SPC)通过将文件分配为非重叠子集来减少可行的缓存位置的数量。我们还将JPC和SPC方法与现有的概率方法进行了比较,该方法被称为差异概率缓存(DPC)和基于随机虚拟的方法(RDA)。通过广泛的数值评估获得的结果证实了分析方法的有效性,JPC和SPC优于DPC和RDA的优势。
Edge caching (EC) decreases the average access delay of the end-users through caching popular content at the edge network, however, it increases the leakage probability of valuable information such as users preferences. Most of the existing privacy-preserving approaches focus on adding layers of encryption, which confronts the network with more challenges such as energy and computation limitations. We employ a chunk-based joint probabilistic caching (JPC) approach to mislead an adversary eavesdropping on the communication inside an EC and maximizing the adversary's error in estimating the requested file and requesting cache. In JPC, we optimize the probability of each cache placement to minimize the communication cost while guaranteeing the desired privacy and then, formulate the optimization problem as a linear programming (LP) problem. Since JPC inherits the curse of dimensionality, we also propose scalable JPC (SPC), which reduces the number of feasible cache placements by dividing files into non-overlapping subsets. We also compare the JPC and SPC approaches against an existing probabilistic method, referred to as disjoint probabilistic caching (DPC) and random dummy-based approach (RDA). Results obtained through extensive numerical evaluations confirm the validity of the analytical approach, the superiority of JPC and SPC over DPC and RDA.