论文标题

广义NASH平衡问题的代数程度

Algebraic Degrees of Generalized Nash Equilibrium Problems

论文作者

Nie, Jiawang, Ranestad, Kristian, Tang, Xindong

论文摘要

本文研究了多项式给出的广义NASH平衡问题(GNEP)的代数程度。他们的广义纳什均衡(GNE)及其KKT或Fritz-John点是定义多项式系数的代数函数。我们研究这些代数函数的程度,这些函数还计算了复杂的KKT或Fritz-John点的数量。在某些通用假设下,我们表明GNEP只有许多复杂的Fritz-John点有限,而每个Fritz-John点都是KKT点。我们还给出了GNEP的代数度的公式,该公式计算了通用病例的复杂Fritz-John点的数量。

This paper studies algebraic degree of generalized Nash equilibrium problems (GNEPs) given by polynomials. Their generalized Nash equilibria (GNEs), as well as their KKT or Fritz-John points, are algebraic functions in the coefficients of defining polynomials. We study the degrees of these algebraic functions, which also counts the numbers of complex KKT or Fritz-John points. Under some genericity assumptions, we show that a GNEP has only finitely many complex Fritz-John points and every Fritz-John point is a KKT point. We also give formulae for algebraic degrees of GNEPs, which count the numbers of complex Fritz-John points for generic cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源