论文标题

广义的Luttinger手术和其他剪切结构

Generalized Luttinger surgery and other cut-and-paste constructions in generalized complex geometry

论文作者

Sillari, Lorenzo

论文摘要

利用稳定的广义复杂结构和符号结构之间的亲和力,我们解释了如何在广义复杂设置中执行来自符号几何形状的某些结构。我们介绍了广义的Luttinger手术,并沿$ \ Mathcal {J} $ - Sympletic Submanifolds进行了广义的Gluck Twist。我们还将分支覆盖物导出到广义复合设置。作为一种应用,在多种高维歧管上产生稳定的广义复合结构。值得注意的是,其中一些具有其类型变化基因座的非同性恋等值路径连接组件。

Exploiting the affinity between stable generalized complex structures and symplectic structures, we explain how certain constructions coming from symplectic geometry can be performed in the generalized complex setting. We introduce generalized Luttinger surgery and generalized Gluck twist along $\mathcal{J}$-symplectic submanifolds. We also export branched coverings to the generalized complex setting. As an application, stable generalized complex structures are produced on a variety of high-dimensional manifolds. Remarkably, some of them have non-homotopy-equivalent path-connected components of their type change locus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源