论文标题

基于MRI扫描的前列腺癌鉴定的增强深度学习技术

An Enhanced Deep Learning Technique for Prostate Cancer Identification Based on MRI Scans

论文作者

Hashem, Hussein, Alsakar, Yasmin, Elgarayhi, Ahmed, Elmogy, Mohammed, Sallah, Mohammed

论文摘要

前列腺癌是全球诊断出的最危险的癌症。前列腺诊断受到许多因素的影响,例如病变复杂性,观察者的可见性和可变性。在过去的几十年中,许多基于磁共振成像(MRI)的技术已用于前列腺癌的鉴定和分类。开发这些技术至关重要,并且具有很大的医学效果,因为它们可以提高治疗益处和患者生存的机会。已经提出了一种取决于MRI的新技术来改善诊断。该技术包括两个阶段。首先,已经对MRI图像进行了预处理,以使医疗图像更适合于检测步骤。其次,已经基于预先训练的深度学习模型InceptionResnetv2进行了前列腺癌的识别,该模型具有许多优势并取得了有效的结果。在本文中,用于此目的的InceptionResnETV2深度学习模型的平均准确度等于89.20%,曲线下的面积(AUC)等于93.6%。与其他先前技术相比,这项提出的新深度学习技术的实验结果代表了有希望的和有效的结果。

Prostate cancer is the most dangerous cancer diagnosed in men worldwide. Prostate diagnosis has been affected by many factors, such as lesion complexity, observer visibility, and variability. Many techniques based on Magnetic Resonance Imaging (MRI) have been used for prostate cancer identification and classification in the last few decades. Developing these techniques is crucial and has a great medical effect because they improve the treatment benefits and the chance of patients' survival. A new technique that depends on MRI has been proposed to improve the diagnosis. This technique consists of two stages. First, the MRI images have been preprocessed to make the medical image more suitable for the detection step. Second, prostate cancer identification has been performed based on a pre-trained deep learning model, InceptionResNetV2, that has many advantages and achieves effective results. In this paper, the InceptionResNetV2 deep learning model used for this purpose has average accuracy equals to 89.20%, and the area under the curve (AUC) equals to 93.6%. The experimental results of this proposed new deep learning technique represent promising and effective results compared to other previous techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源