论文标题
任意风格转移的质量评估:主观研究和客观度量
Quality Evaluation of Arbitrary Style Transfer: Subjective Study and Objective Metric
论文作者
论文摘要
任意神经风格转移是一个重要的主题,具有巨大的研究价值和广泛的工业应用,它致力于使用另一种样式的样式呈现一个图像的结构。最近的研究致力于在任意风格转移(AST)的任务上进行巨大努力,以提高风格化质量。但是,关于AST图像质量评估的探索很少,即使它可以指导不同算法的设计。在本文中,我们首先构建了一个新的AST图像质量评估数据库(AST-IQAD),该数据库包括150个内容样式的图像对以及由八种典型AST算法产生的相应的1200个风格化图像。然后,在我们的AST-IQAD数据库上进行了一项主观研究,该研究获得了三种主观评估(即内容保存(CP),样式相似(SR)和整体视觉(OV)的所有风格化图像的主观评分评分。为了定量测量AST图像的质量,我们提出了一种基于稀疏表示的新方法,该方法根据稀疏特征相似性计算质量。我们AST-IQAD的实验结果证明了该方法的优越性。数据集和源代码将在https://github.com/hangwei-chen/ast-iqad-srqe上发布
Arbitrary neural style transfer is a vital topic with great research value and wide industrial application, which strives to render the structure of one image using the style of another. Recent researches have devoted great efforts on the task of arbitrary style transfer (AST) for improving the stylization quality. However, there are very few explorations about the quality evaluation of AST images, even it can potentially guide the design of different algorithms. In this paper, we first construct a new AST images quality assessment database (AST-IQAD), which consists 150 content-style image pairs and the corresponding 1200 stylized images produced by eight typical AST algorithms. Then, a subjective study is conducted on our AST-IQAD database, which obtains the subjective rating scores of all stylized images on the three subjective evaluations, i.e., content preservation (CP), style resemblance (SR), and overall vision (OV). To quantitatively measure the quality of AST image, we propose a new sparse representation-based method, which computes the quality according to the sparse feature similarity. Experimental results on our AST-IQAD have demonstrated the superiority of the proposed method. The dataset and source code will be released at https://github.com/Hangwei-Chen/AST-IQAD-SRQE