论文标题

塑性指导进化的计算建模

Computational Modelling of Plasticity-Led Evolution

论文作者

Ng, Eden Tian Hwa, Kinjo, Akira R.

论文摘要

塑性领导的进化是一种进化的形式,其中环境的变化通过表型可塑性引起了新的特征,此后,在新的环境下,新颖的特征在世代相传。预计这种进化方式将解决渐进主义问题(即,在面对巨大的环境变化的情况下,现代进化综合所隐含的突变的缓慢积累,诱发表型变异的突变的进化)。虽然实验性工作对于验证以可塑性为主导的进化确实发生了必不可少,但我们需要计算模型来深入了解其潜在机制并做出定性预测。除遗传学和自然选择外,此类计算模型还应包括发展过程和基因环境相互作用。我们指出,基因调节网络模型可以结合上述所有概念。在这篇综述中,我们重点介绍了基因调节网络的计算建模结果,这些网络巩固了可塑性指导的进化标准。由于基因调节网络在数学上等同于人工复发的神经网络,因此我们还讨论了它们的类比和差异,这可能有助于进一步理解可塑性主导的进化的机制。

Plasticity-led evolution is a form of evolution where a change in the environment induces novel traits via phenotypic plasticity, after which the novel traits are genetically accommodated over generations under the novel environment. This mode of evolution is expected to resolve the problem of gradualism (i.e., evolution by the slow accumulation of mutations that induce phenotypic variation) implied by the Modern Evolutionary Synthesis, in the face of a large environmental change. While experimental works are essential for validating that plasticity-led evolution indeed happened, we need computational models to gain insight into its underlying mechanisms and make qualitative predictions. Such computational models should include the developmental process and gene-environment interactions in addition to genetics and natural selection. We point out that gene regulatory network models can incorporate all the above notions. In this review, we highlight results from computational modelling of gene regulatory networks that consolidate the criteria of plasticity-led evolution. Since gene regulatory networks are mathematically equivalent to artificial recurrent neural networks, we also discuss their analogies and discrepancies, which may help further understand the mechanisms underlying plasticity-led evolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源