论文标题
暹罗形式:一个具有时间融合的全变形暹罗网络,可精确建筑物检测和变化检测,以双向遥感图像
SiamixFormer: a fully-transformer Siamese network with temporal Fusion for accurate building detection and change detection in bi-temporal remote sensing images
论文作者
论文摘要
使用遥感图像进行建筑检测和更改检测可以帮助城市和救援计划。此外,它们可用于自然灾害后的建筑损害评估。当前,大多数用于建筑物检测的现有模型仅使用一个图像(前拆架图像)来检测建筑物。这是基于以下想法:污水播放后图像由于存在被破坏的建筑物而降低了模型的性能。在本文中,我们提出了一种称为Siamixformer的暹罗模型,该模型使用前和垃圾后图像作为输入。我们的模型有两个编码器,并具有分层变压器体系结构。两个编码器中每个阶段的输出都以特征融合的时间变压器为单位,以从disasaster图像生成查询,并且(键,值)是从disasaster图像中生成的。为此,在特征融合中也考虑了时间特征。在特征融合中使用颞变压器的另一个优点是,与CNN相比,它们可以更好地维护变压器编码器产生的大型接受场。最后,在每个阶段,将颞变压器的输出输入简单的MLP解码器。在XBD和WHU数据集上评估了暹罗形式模型,用于构建检测,以及在Levir-CD和CDD数据集上进行更改检测,并且可以胜过最新的。
Building detection and change detection using remote sensing images can help urban and rescue planning. Moreover, they can be used for building damage assessment after natural disasters. Currently, most of the existing models for building detection use only one image (pre-disaster image) to detect buildings. This is based on the idea that post-disaster images reduce the model's performance because of presence of destroyed buildings. In this paper, we propose a siamese model, called SiamixFormer, which uses pre- and post-disaster images as input. Our model has two encoders and has a hierarchical transformer architecture. The output of each stage in both encoders is given to a temporal transformer for feature fusion in a way that query is generated from pre-disaster images and (key, value) is generated from post-disaster images. To this end, temporal features are also considered in feature fusion. Another advantage of using temporal transformers in feature fusion is that they can better maintain large receptive fields generated by transformer encoders compared with CNNs. Finally, the output of the temporal transformer is given to a simple MLP decoder at each stage. The SiamixFormer model is evaluated on xBD, and WHU datasets, for building detection and on LEVIR-CD and CDD datasets for change detection and could outperform the state-of-the-art.