论文标题

块传输$ 3 $ - $(v,k,1)$设计与交替组相关

Block-transitive $3$-$(v,k,1)$ designs associated with alternating groups

论文作者

Lan, Ting, Liu, Weijun, Yin, Fu-Gang

论文摘要

令$ \ Mathcal {d} $为非平凡的$ 3 $ - $(V,K,1)$设计,允许块变量$ g $ g $自动形态。 Gan和第二作者的最新作品断言,$ G $是仿射或几乎简单的。在本文中,证明,如果$ g $与Socle交替组几乎很简单,那么$ \ Mathcal {d} $是唯一的$ 3 $ - $ - $(10,4,1)$设计,$ g = \ g = \ mathrm {pgl}(pgl}(2,9)(2,9) $ \ MATHRM {aut}(\ Mathrm {a} _6)= \ Mathrm {S} _6:\ Mathrm {z} _2 $,而$ G $是flag-transistive。

Let $\mathcal{D}$ be a nontrivial $3$-$(v,k,1)$ design admitting a block-transitive group $G$ of automorphisms. A recent work of Gan and the second author asserts that $G$ is either affine or almost simple. In this paper, it is proved that if $G$ is almost simple with socle an alternating group, then $\mathcal{D}$ is the unique $3$-$(10,4,1)$ design, and $G=\mathrm{PGL}(2,9)$, $\mathrm{M}_{10}$ or $\mathrm{Aut}(\mathrm{A}_6 )=\mathrm{S}_6:\mathrm{Z}_2$, and $G$ is flag-transitive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源