论文标题
使用快速无线电爆发来测量哈勃人的常数
A measurement of Hubble's Constant using Fast Radio Bursts
论文作者
论文摘要
我们使用澳大利亚平方公里阵列探路者(Askap)和Murriyang(Parkes)射程望远镜的快速无线电爆发(FRB)观察来限制Hubble常数H $ _0 $。我们使用红移分散度量(“ Macquart”)关系,考虑到内在的光度功能,宇宙气体分布,人口进化,宿主星系对分散措施的贡献(DM $ _ {\ rm host} $)以及由于持续时间和远程远程孔梁构成的观察性偏见。使用由Comensal实时ASKAP快速瞬态(手工艺)调查检测到的16个ASKAP FRB的最新样本,并将其本地定位于宿主星系,以及来自Parkes and Askap的60个未定位的FRB,我们最合适的h $ _0 $值为$ 73 _ _ { - 8}^{-8}^{+12}^{+12} $ km s $ s $ s $^$^$^$}与以前的基于FRB的估计相比,FRB Energetics和DM $ _ {\ rm主机} $中的不确定性在推断值为H $ _0 $中产生更大的不确定性。使用h $ _0 $上的先验覆盖67--74 km s $^{ - 1} $ mpc $^{ - 1} $ range,我们估计中间dm $ _ {\ rm host} = 186 _ { - { - 48}^{ - 48}^{+59} $ km s $ s $ s $^ - 1} $}我们确认,FRB种群以红移的形式演变,类似于恒星形成率。我们使用schechter亮度函数来限制最大frb能量为$ \ log_ {10} e _ {\ rm max} = 41.26 _ { - 0.22}^{+0.27} $ erg,假设具有特征性的FRB发射率在1.3 ghz和1.3 GHz和累积的情况下, $γ= -0.95 _ { - 0.15}^{+0.18} $。我们用100个模拟FRB的样本证明,可以用$ \ pm 2.5 $ km s $ s $^{ - 1} $ mpc $^{ - 1} $来衡量H $ _0 $,这表明具有升级的ASKAP FRB搜索系统来阐明Hubble张力。最后,我们探讨了影响FRB分析的一系列样本和选择偏见。
We constrain the Hubble constant H$_0$ using Fast Radio Burst (FRB) observations from the Australian Square Kilometre Array Pathfinder (ASKAP) and Murriyang (Parkes) radio telescopes. We use the redshift-dispersion measure (`Macquart') relationship, accounting for the intrinsic luminosity function, cosmological gas distribution, population evolution, host galaxy contributions to the dispersion measure (DM$_{\rm host}$), and observational biases due to burst duration and telescope beamshape. Using an updated sample of 16 ASKAP FRBs detected by the Commensal Real-time ASKAP Fast Transients (CRAFT) Survey and localised to their host galaxies, and 60 unlocalised FRBs from Parkes and ASKAP, our best-fitting value of H$_0$ is calculated to be $73_{-8}^{+12}$ km s$^{-1}$ Mpc$^{-1}$. Uncertainties in FRB energetics and DM$_{\rm host}$ produce larger uncertainties in the inferred value of H$_0$ compared to previous FRB-based estimates. Using a prior on H$_0$ covering the 67--74 km s$^{-1}$ Mpc$^{-1}$ range, we estimate a median DM$_{\rm host} = 186_{-48}^{+59}$ km s$^{-1}$ Mpc$^{-1}$, exceeding previous estimates. We confirm that the FRB population evolves with redshift similarly to the star-formation rate. We use a Schechter luminosity function to constrain the maximum FRB energy to be $\log_{10} E_{\rm max}=41.26_{-0.22}^{+0.27}$ erg assuming a characteristic FRB emission bandwidth of 1 GHz at 1.3 GHz, and the cumulative luminosity index to be $γ=-0.95_{-0.15}^{+0.18}$. We demonstrate with a sample of 100 mock FRBs that H$_0$ can be measured with an uncertainty of $\pm 2.5$ km s$^{-1}$ Mpc$^{-1}$, demonstrating the potential for clarifying the Hubble tension with an upgraded ASKAP FRB search system. Last, we explore a range of sample and selection biases that affect FRB analyses.