论文标题

部分可观测时空混沌系统的无模型预测

A Transformer-based Neural Language Model that Synthesizes Brain Activation Maps from Free-Form Text Queries

论文作者

Ngo, Gia H., Nguyen, Minh, Chen, Nancy F., Sabuncu, Mert R.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Neuroimaging studies are often limited by the number of subjects and cognitive processes that can be feasibly interrogated. However, a rapidly growing number of neuroscientific studies have collectively accumulated an extensive wealth of results. Digesting this growing literature and obtaining novel insights remains to be a major challenge, since existing meta-analytic tools are constrained to keyword queries. In this paper, we present Text2Brain, an easy to use tool for synthesizing brain activation maps from open-ended text queries. Text2Brain was built on a transformer-based neural network language model and a coordinate-based meta-analysis of neuroimaging studies. Text2Brain combines a transformer-based text encoder and a 3D image generator, and was trained on variable-length text snippets and their corresponding activation maps sampled from 13,000 published studies. In our experiments, we demonstrate that Text2Brain can synthesize meaningful neural activation patterns from various free-form textual descriptions. Text2Brain is available at https://braininterpreter.com as a web-based tool for efficiently searching through the vast neuroimaging literature and generating new hypotheses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源