论文标题
关于超对称广告的独特性,$ _5 $黑洞与感谢
On the uniqueness of supersymmetric AdS$_5$ black holes with toric symmetry
论文作者
论文摘要
我们考虑对超对称广告的分类$ _5 $黑洞解决方案,以最小化的超级加盖式超级实现,以接纳圆环对称性。这个问题减少了在基本空间上找到一类感谢您的Kähler指标,这些指标在符号坐标中取决于符号势。我们在地平线或对称轴的任何组件附近得出了互合势的一般形式,该组件确定了该类别中任何黑洞溶液的奇异部分,包括可能的新解决方案,例如黑镜头和多黑孔。我们发现,在这种情况下,最通用的黑洞解决方案是由Chong,Cvetic,Lü和Pope(CCLP)发现的,它是通过非常简单的符号势来描述的。我们证明,任何在平滑的地平线外的超对称性和复曲面溶液,具有卡拉比类型的Kähler基础度量,都必须是CCLP黑洞溶液或其近乎马的几何形状。
We consider the classification of supersymmetric AdS$_5$ black hole solutions to minimal gauged supergravity that admit a torus symmetry. This problem reduces to finding a class of toric Kähler metrics on the base space, which in symplectic coordinates are determined by a symplectic potential. We derive the general form of the symplectic potential near any component of the horizon or axis of symmetry, which determines its singular part for any black hole solution in this class, including possible new solutions such as black lenses and multi-black holes. We find that the most general known black hole solution in this context, found by Chong, Cvetic, Lü and Pope (CCLP), is described by a remarkably simple symplectic potential. We prove that any supersymmetric and toric solution that is timelike outside a smooth horizon, with a Kähler base metric of Calabi type, must be the CCLP black hole solution or its near-horizon geometry.