论文标题
最小的互动宇宙
The Smallest Interacting Universe
论文作者
论文摘要
简单的玩具模型研究了哈密顿量与宇宙初始状态之间地区的共同出现。我们假设对哈密顿综合和量子状态的基本损失功能,并通过梯度下降最小化。这种最小化产生了张量的量产物结构,同时受到哈密顿量和国家的尊重,这表明可以通过类似于自发对称性破裂的过程来出现局部性。我们讨论了该程序与时间问题的箭头的相关性。 在我们的玩具模型中,我们将张量分解的出现解释为在先前未分化的(RAW)希尔伯特空间内的单个自由度的出现。较早的工作[5,6]只着眼于汉密尔顿人的当地出现,并发现对$ \ dim = n $的原始希尔伯特空间的强烈数值确认是不稳定的,并且宁愿在$ n = pq $不是元素时解决张量分解,并且在[6]中也可以在[6]中看到“ prime”,甚至在第一次散发出一个小于小的show shed theed a vinter of there fix facter of the fix facter。 $ 7 = 1+2 \ CDOT 3 $。这是在$ \ mathfrak {su}(su}(n)$上的指标空间中相当普遍的潜在功能$ f $的上下文中。通过操作员级自发对称性破坏(SSB)的Qunits的出现可能有助于我们理解为什么世界似乎包括无数互动的自由度。但是,了解为什么宇宙具有最初的哈密顿$ H_0 $具有多体结构的概念值有限,除非最初的状态$ |ψ_0\ rangle $,也是由该张量分解的结构。在这里,我们适应$ \ {g,|ψ_0\ rangle \} =(\ text {trext})\ times(\ text {printe {plitial states})$,并找到ssb现在在$ g $ g $和$ |ψ_0\ rangle $相同的情况下,在$ g $和$ g $之间产生$ g $ ssb ins comptimate insporty otteration insportane otteration insportante oft insept,找到SSB的ssb,并找到SSB的consb。
The co-emergence of locality between the Hamiltonian and initial state of the universe is studied in a simple toy model. We hypothesize a fundamental loss functional for the combined Hamiltonian and quantum state and minimize it by gradient descent. This minimization yields a tensor product structure simultaneously respected by both the Hamiltonian and the state, suggesting that locality can emerge by a process analogous to spontaneous symmetry breaking. We discuss the relevance of this program to the arrow of time problem. In our toy model, we interpret the emergence of a tensor factorization as the appearance of individual degrees of freedom within a previously undifferentiated (raw) Hilbert space. Earlier work [5, 6] looked at the emergence of locality in Hamiltonians only, and found strong numerical confirmation of that raw Hilbert spaces of $\dim = n$ are unstable and prefer to settle on tensor factorization when $n=pq$ is not prime, and in [6] even primes were seen to "factor" after first shedding a small summand, e.g. $7=1+2\cdot 3$. This was found in the context of a rather general potential functional $F$ on the space of metrics $\{g_{ij}\}$ on $\mathfrak{su}(n)$, the Lie algebra of symmetries. This emergence of qunits through operator-level spontaneous symmetry breaking (SSB) may help us understand why the world seems to consist of myriad interacting degrees of freedom. But understanding why the universe has an initial Hamiltonian $H_0$ with a many-body structure is of limited conceptual value unless the initial state, $|ψ_0\rangle$, is also structured by this tensor decomposition. Here we adapt $F$ to become a functional on $\{g,|ψ_0\rangle\}=(\text{metrics})\times (\text{initial states})$, and find SSB now produces a conspiracy between $g$ and $|ψ_0\rangle$, where they simultaneously attain low entropy by settling on the same qubit decomposition.