论文标题

部分可观测时空混沌系统的无模型预测

Tensor types and their use in physics

论文作者

Bauer, Andreas, Nietner, Alexander

论文摘要

本文的内容可以大致组织为三级通用层次结构。首先,我们介绍了一种新语言,该语言使我们能够以所谓的2个schemes的身份以系统和明确的方式表达各种分类结构。尽管两个式架可以形式化类别结构,例如对称单体类别,但它们不限于此,并且可以用于定义没有分类类似物的结构。大多数分类结构都带有有效的图形微积分,例如对称单体类别的字符串图,而对于有趣的2个schemes来说,相同的是相同的。在这项工作中,我们专注于一种特定的非类别2-SCHEME,我们将其称为张量类型。在层次结构的第二层上,我们详细介绍了此2-Scheme的不同口味。张量类型的有效图形计算是张量网络或penrose图的有效图形计算,即没有时间流的字符串图。因此,张量类型与紧凑的封闭类别相似,尽管存在各种较小但潜在的重要差异。同样,尽管这两个定义都是2个架子的例子,但两种定义都使用了完全不同的机制。在层次结构的第三级,我们提供了一长串混凝土张量类型的家庭,以某种方式使它们可以通过物理学的潜在用途来访问具体计算。不同的张量类型描述了不同类型的物理模型,例如经典或量子物理学,确定性或统计物理,多体或单身物理学,或者有或没有对称性或费米子的物质。

The content of this paper can be roughly organized into a three-level hierarchy of generality. At the first, most general level, we introduce a new language which allows us to express various categorical structures in a systematic and explicit manner in terms of so-called 2-schemes. Although 2-schemes can formalize categorical structures such as symmetric monoidal categories, they are not limited to this, and can be used to define structures with no categorical analogue. Most categorical structures come with an effective graphical calculus such as string diagrams for symmetric monoidal categories, and the same is true more generally for interesting 2-schemes. In this work, we focus on one particular non-categorical 2-scheme, whose instances we refer to as tensor types. At the second level of the hierarchy, we work out different flavors of this 2-scheme in detail. The effective graphical calculus of tensor types is that of tensor networks or Penrose diagrams, that is, string diagrams without a flow of time. As such, tensor types are similar to compact closed categories, though there are various small but potentially important differences. Also, the two definitions use completely different mechanisms despite both being examples of 2-schemes. At the third level of the hierarchy, we provide a long list of different families of concrete tensor types, in a way which makes them accessible to concrete computations, motivated by their potential use in physics. Different tensor types describe different types of physical models, such as classical or quantum physics, deterministic or statistical physics, many-body or single-body physics, or matter with or without symmetries or fermions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源