论文标题
使用针对性的最大似然估计来估计纵向连续或二进制数据的治疗效果:对28个糖尿病临床试验的系统评估
Using Targeted Maximum Likelihood Estimation to Estimate Treatment Effect with Longitudinal Continuous or Binary Data: A Systematic Evaluation of 28 Diabetes Clinical Trials
论文作者
论文摘要
对糖尿病治疗区域的临床试验的主要分析通常涉及混合模型重复测量方法(MMRM)方法,以估计纵向连续结局的平均治疗效果,以及用于纵向二元结果的广义线性混合模型(GLMM)方法。在本文中,我们考虑了平均治疗效果的另一个估计量,称为靶向最大似然估计器(TMLE)。该估计器可以是模型连续或二进制结果的一步替代方案。我们通过模拟研究和分析来自28个糖尿病临床试验的实际数据比较了这些估计量。这些模拟涉及不同的缺少数据情景,实际数据集涵盖了与具有不同作用机理的糖尿病药物的现实临床试验中的结果和协变量的广泛分布。对于所有设置,调整后的估计量往往比未经调整的估计量更有效。在纵向连续结局的设置中,MMRM的访问和基线变量相互作用的方法似乎主导了MMRM的性能,仅考虑基线变量的主要影响,同时在模拟和数据应用中显示出与TMLE估计器的更好或可比效率。为了建模纵向二进制结果,TMLE通常就相对效率优于GLMM,并且避免了GLMM的繁琐协方差拟合程序,这使TMLE使TMLE成为更有利的估计器。
The primary analysis of clinical trials in diabetes therapeutic area often involves a mixed-model repeated measure (MMRM) approach to estimate the average treatment effect for longitudinal continuous outcome, and a generalized linear mixed model (GLMM) approach for longitudinal binary outcome. In this paper, we considered another estimator of the average treatment effect, called targeted maximum likelihood estimator (TMLE). This estimator can be a one-step alternative to model either continuous or binary outcome. We compared those estimators by simulation studies and by analyzing real data from 28 diabetes clinical trials. The simulations involved different missing data scenarios, and the real data sets covered a wide range of possible distributions of the outcome and covariates in real-life clinical trials for diabetes drugs with different mechanisms of action. For all the settings, adjusted estimators tended to be more efficient than the unadjusted one. In the setting of longitudinal continuous outcome, the MMRM approach with visits and baseline variables interaction appeared to dominate the performance of the MMRM considering the main effects only for the baseline variables while showing better or comparable efficiency to the TMLE estimator in both simulations and data applications. For modeling longitudinal binary outcome, TMLE generally outperformed GLMM in terms of relative efficiency, and its avoidance of the cumbersome covariance fitting procedure from GLMM makes TMLE a more advantageous estimator.