论文标题

通过基于注意的个性化联合学习来减轻学生绩效预测的偏见

Mitigating Biases in Student Performance Prediction via Attention-Based Personalized Federated Learning

论文作者

Chu, Yun-Wei, Hosseinalipour, Seyyedali, Tenorio, Elizabeth, Cruz, Laura, Douglas, Kerrie, Lan, Andrew, Brinton, Christopher

论文摘要

由于数据可用性的偏见,基于学习的学生建模的传统方法对代表性不足的学生群体的推广不佳。在本文中,我们提出了一种方法来预测学生在线学习活动中的绩效,该方法优化了与种族和性别等不同人口组的推论准确性。在我们的方法中,基于联邦学习的最新基础,个人子组的个性化模型是从所有学生模型中通过元素级别更新汇总的全球模型得出的,该模型是元组异质性的。为了了解学生活动的更好代表,我们通过自我监督的行为预处理方法来增强我们的方法,该方法利用了多种学生行为方式(例如,访问教授视频和在论坛上的参与),并在模型汇总阶段中包括神经网络注意事项机制。通过从在线课程中对三个现实世界数据集进行实验,我们证明我们的方法在预测所有子组的学生学习成果方面对现有的学生建模基准进行了实质性改进。对由此产生的学生嵌入的视觉分析证实,我们的个性化方法确实确定了不同亚组中的不同活动模式,这与与基准相比其更强的推理能力一致。

Traditional learning-based approaches to student modeling generalize poorly to underrepresented student groups due to biases in data availability. In this paper, we propose a methodology for predicting student performance from their online learning activities that optimizes inference accuracy over different demographic groups such as race and gender. Building upon recent foundations in federated learning, in our approach, personalized models for individual student subgroups are derived from a global model aggregated across all student models via meta-gradient updates that account for subgroup heterogeneity. To learn better representations of student activity, we augment our approach with a self-supervised behavioral pretraining methodology that leverages multiple modalities of student behavior (e.g., visits to lecture videos and participation on forums), and include a neural network attention mechanism in the model aggregation stage. Through experiments on three real-world datasets from online courses, we demonstrate that our approach obtains substantial improvements over existing student modeling baselines in predicting student learning outcomes for all subgroups. Visual analysis of the resulting student embeddings confirm that our personalization methodology indeed identifies different activity patterns within different subgroups, consistent with its stronger inference ability compared with the baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源