论文标题

使用机器学习模型的洪水预测

Flood Prediction Using Machine Learning Models

论文作者

Syeed, Miah Mohammad Asif, Farzana, Maisha, Namir, Ishadie, Ishrar, Ipshita, Nushra, Meherin Hossain, Rahman, Tanvir

论文摘要

洪水是大自然最灾难性的灾难之一,对人类生活,农业,基础设施和社会经济制度造成了不可逆转和巨大的破坏。已经进行了几项有关洪水灾难管理和洪水预测系统的研究。实时对洪水的发作和进展的准确预测具有挑战性。为了估计大面积的水位和速度,有必要将数据与计算要求的洪水传播模型相结合。本文旨在减少这种自然灾害的极端风险,并通过使用不同的机器学习模型为洪水提供预测来促进政策建议。这项研究将使用二进制逻辑回归,K-Nearest邻居(KNN),支持向量分类器(SVC)和决策树分类器来提供准确的预测。通过结果,将进行比较分析,以了解哪种模型具有更好的准确性。

Floods are one of nature's most catastrophic calamities which cause irreversible and immense damage to human life, agriculture, infrastructure and socio-economic system. Several studies on flood catastrophe management and flood forecasting systems have been conducted. The accurate prediction of the onset and progression of floods in real time is challenging. To estimate water levels and velocities across a large area, it is necessary to combine data with computationally demanding flood propagation models. This paper aims to reduce the extreme risks of this natural disaster and also contributes to policy suggestions by providing a prediction for floods using different machine learning models. This research will use Binary Logistic Regression, K-Nearest Neighbor (KNN), Support Vector Classifier (SVC) and Decision tree Classifier to provide an accurate prediction. With the outcome, a comparative analysis will be conducted to understand which model delivers a better accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源