论文标题
热对流中湍流上层建筑的粒子图像速度和温度法
Combined particle image velocimetry and thermometry of turbulent superstructures in thermal convection
论文作者
论文摘要
水平扩展的三维雷利 - 纳德对流流中的湍流上层建筑在prandtl数字的受控实验室实验中研究了$ pr = 7 $。带有方形横截面的Rayleigh-Bénard单元,使用宽高比$γ= l/h = 25 $,侧面长度$ l $和高度$ h $。考虑到$ 10^5 <ra <10^6 $的三个不同的雷利号。该单元在光学上可访问,因此可以将热色液晶体作为示踪剂颗粒播种,以在长时间的长时间内在水平中间平面的大部分中同时监测温度和速度场,最多6小时,相当于$ 10^4 $对流的自由落体时间单元。立体粒子图像的联合应用速度法和温度计将评估大部分对流电池中的局部对流热通量场的可能性,从而分析流动中的特征大规模传输模式。与现有的直接数值仿真数据的直接比较在$ pr,ra $和$γ$的相同参数范围内显示出相同的上层建筑模式和全球湍流热传递缩放比例$ NU(RA)$。轻微的定量差异可以追溯到违反顶部的水冷玻璃板处的等温边界条件。模式的特征尺度落在相同的大小范围内,但系统更大。通过实验证实,上层建筑模式是传热的重要骨干。此外,本实验可以使大规模模式的逐渐演变进行研究,这在大型镜比湍流对流的模拟中具有挑战性。
Turbulent superstructures in horizontally extended three-dimensional Rayleigh-Bénard convection flows are investigated in controlled laboratory experiments in water at Prandtl number $Pr = 7$. A Rayleigh-Bénard cell with square cross-section, aspect ratio $Γ= l/h = 25$, side length $l$ and height $h$ is used. Three different Rayleigh numbers in the range $10^5 < Ra < 10^6$ are considered. The cell is accessible optically, such that thermochromic liquid crystals can be seeded as tracer particles to monitor simultaneously temperature and velocity fields in a large section of the horizontal mid-plane for long time periods of up to 6 h, corresponding to approximately $10^4$ convective free-fall time units. The joint application of stereoscopic particle image velocimetry and thermometry opens the possibility to assess the local convective heat flux fields in the bulk of the convection cell and thus to analyse the characteristic large-scale transport patterns in the flow. A direct comparison with existing direct numerical simulation data in the same parameter range of $Pr, Ra$ and $Γ$ reveals the same superstructure patterns and global turbulent heat transfer scaling $Nu(Ra)$. Slight quantitative differences can be traced back to violations of the isothermal boundary condition at the extended water-cooled glass plate at the top. The characteristic scales of the patterns fall into the same size range, but are systematically larger. It is confirmed experimentally that the superstructure patterns are an important backbone of the heat transfer. The present experiments enable, furthermore, the study of the gradual evolution of the large-scale patterns in time, which is challenging in simulations of large-aspect-ratio turbulent convection.