论文标题

量规SL(2n,c)理论中基本力的统一

Unification of elementary forces in gauge SL(2N,C) theories

论文作者

Chkareuli, J. L.

论文摘要

我们认为,量规$ sl(2n,c)$理论可能指出了一种可能的方式,包括重力在内的已知基本力量可以始终如一地统一。值得注意的是,尽管所有相关的量规场均在$ SL(2n,c)$对称组的同一伴随多重上呈现,但是在为伴随的四五场而开发的弱场方法中,可以自然抑制张量的张力尺寸尺寸。结果,整个理论有效地拥有局部$ sl(2,c)\ times su(n)$对称性,从而自然地导致$ sl(2,c)$ gauge Gravity,一方面是$ su(n)$ su(n)$ Grand Unified理论。由于所有参与$ sl(2n,c)$理论的州均根据其旋转值进行了分类,因此许多可能的$ su(n)$肠子(包括传统的单户家庭$ su(5)$理论)似乎与标准$ 1/2 $ spin Quarks和Leptons无关。同时,$ SU(8)$ grand unification均针对源于$ SL(16,C)$理论的所有三个复合夸克和叶子家族,似乎具有一些详细的研究。

We argue that the gauge $SL(2N,C)$ theories may point to a possible way where the known elementary forces, including gravity, could be consistently unified. Remarkably, while all related gauge fields are presented in the same adjoint multiplet of the $SL(2N,C)$ symmetry group, the tensor field submultiplet providing gravity can be naturally suppressed in the weak-field approach developed for accompanying tetrad fields. As a result, the whole theory turns out to effectively possess the local $SL(2,C)\times SU(N)$ symmetry so as to naturally lead to the $SL(2,C)$ gauge gravity, on the one hand, and the $SU(N)$ grand unified theory, on the other. Since all states involved in the $SL(2N,C)$ theories are additionally classified according to their spin values, many possible $SU(N)$ GUTs - including the conventional one-family $SU(5)$ theory - appear not to be relevant for the standard $1/2$ spin quarks and leptons. Meanwhile, the $SU(8)$ grand unification for all three families of composite quarks and leptons that stems from the $SL(16,C)$ theory seems to be of special interest that is studied in some detail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源