论文标题
增强超导量子位与电场的连贯性
Enhancing the Coherence of Superconducting Quantum Bits with Electric Fields
论文作者
论文摘要
在使量子计算机成为现实的努力中,集成的超导电路已成为有前途的建筑。这种方法的一个主要挑战是脱碳式隧道缺陷源于量子电极界面的伪造原子隧道缺陷,这可能会共同吸收Qubit的振动电场中的能量,并减少Qubit的能量放松时间$ T_1 $。在这里,我们表明,可以使用施加的DC-电场来调整偏离量子共振的主导缺陷,从而提高量子相干性。我们演示了一种优化应用的场偏差并增强30分钟平均量子$ T_1 $时间的方法。我们还讨论了如何在超导量子处理器中实现局部栅极电极,以同时对单个Qubits进行同时的原位相干性优化。
In the endeavour to make quantum computers a reality, integrated superconducting circuits have become a promising architecture. A major challenge of this approach is decoherence originating from spurious atomic tunneling defects at the interfaces of qubit electrodes, which may resonantly absorb energy from the qubit's oscillating electric field and reduce the qubit's energy relaxation time $T_1$. Here, we show that qubit coherence can be improved by tuning dominating defects away from the qubit resonance using an applied DC-electric field. We demonstrate a method that optimizes the applied field bias and enhances the 30-minute averaged qubit $T_1$ time by 23\%. We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.