论文标题

限制定理的折扣收敛永久性ii

Limit theorems for discounted convergent perpetuities II

论文作者

Iksanov, Alexander, Marynych, Alexander, Nikitin, Anatolii

论文摘要

令$(ξ_1,η_1)$,$(ξ_2,η_2),\ ldots $是独立分布的$ \ mathbb {r}^2 $ - 价值的随机向量。假设$ξ_1$具有零均值和有限差异,并且对$η_1$的分布施加了三个不同的假设,那么我们证明了三个功能限制定理的三个功能限制定理,用于收敛性打折的永久性$ \ sum_ \ sum_ {k \ geq 0} e^{k \ geq 0} $ a \至0+$。另外,我们证明了迭代对数的定律,该定律与上述功能极限定理之一相对应。本文继续在伊克萨诺夫(Iksanov),尼基丁(Nikitin)和萨莫林科(Samoillenko)(2022)的论文中发起的一系列研究,该研究的重点是限制定理,以不同类型的收敛性折扣永久性。

Let $(ξ_1, η_1)$, $(ξ_2, η_2),\ldots$ be independent identically distributed $\mathbb{R}^2$-valued random vectors. Assuming that $ξ_1$ has zero mean and finite variance and imposing three distinct groups of assumptions on the distribution of $η_1$ we prove three functional limit theorems for the logarithm of convergent discounted perpetuities $\sum_{k\geq 0}e^{ξ_1+\ldots+ξ_k-ak}η_{k+1}$ as $a\to 0+$. Also, we prove a law of the iterated logarithm which corresponds to one of the aforementioned functional limit theorems. The present paper continues a line of research initiated in the paper Iksanov, Nikitin and Samoillenko (2022), which focused on limit theorems for a different type of convergent discounted perpetuities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源