论文标题
从高分辨率光谱法中清楚地了解云棕色矮人的伴侣
A Clear View of a Cloudy Brown Dwarf Companion from High-Resolution Spectroscopy
论文作者
论文摘要
直接成像研究主要使用了低分辨率光谱($ r \ sim20-100 $)来研究巨大的系外行星和棕色矮人的伴侣的大气,但是云的存在经常导致检索到的大气丰度(例如C. C/O,金属性)中检索到的大气丰度。这排除了对这些同伴的形成机制的明确见解。 Keck Planet Imager和Truniber(KPIC)使用自适应光学器件和单模纤维将光线运输到NIRSPEC($ k $ band中的$ r \ sim35,000 $),旨在通过高分辨率光谱法解决这些挑战。使用基于Petitradtrans的大气检索框架,我们分析了KPIC高分辨率光谱($ 2.29-2.49〜μ $ M)和档案低分辨率光谱($ 1-2.2〜μ $ M)的基准BROWN BROWN HD 4747 B 4747 B 4747 B 4747 B 4747 B 4747 B ($ m = 67.2 \ pm1.8〜m _ {\ rm {jup}} $,$ a = 10.0 \ pm0.2 $ au,$ t _ {\ rm eff} \ lm eff} \ oft1400 $ k)。我们发现,KPIC高分辨率频谱对同伴的c/o和金属性与其宿主恒星$1-2σ$之间一致。从$ K $ band高分辨率频谱中检索的参数也与我们选择的云模型无关。相反,从低分辨率光谱中检索的参数对我们选择的云模型高度敏感。最后,我们在此L/T过渡伴侣中检测到CO,H $ _2 $ O和CH $ _4 $(log的量混合率(ch $ _4 $)= $ - 4.82 \ pm0.23 $)。相对分子的丰度使我们能够限制HD 4747 B大气中化学不平衡的程度,并推断出根据混合长度理论预测的垂直扩散系数。
Direct imaging studies have mainly used low-resolution spectroscopy ($R\sim20-100$) to study the atmospheres of giant exoplanets and brown dwarf companions, but the presence of clouds has often led to degeneracies in the retrieved atmospheric abundances (e.g. C/O, metallicity). This precludes clear insights into the formation mechanisms of these companions. The Keck Planet Imager and Characterizer (KPIC) uses adaptive optics and single-mode fibers to transport light into NIRSPEC ($R\sim35,000$ in $K$ band), and aims to address these challenges with high-resolution spectroscopy. Using an atmospheric retrieval framework based on petitRADTRANS, we analyze KPIC high-resolution spectrum ($2.29-2.49~μ$m) and archival low-resolution spectrum ($1-2.2~μ$m) of the benchmark brown dwarf HD 4747 B ($m=67.2\pm1.8~M_{\rm{Jup}}$, $a=10.0\pm0.2$ au, $T_{\rm eff}\approx1400$ K). We find that our measured C/O and metallicity for the companion from the KPIC high-resolution spectrum agree with that of its host star within $1-2σ$. The retrieved parameters from the $K$ band high-resolution spectrum are also independent of our choice of cloud model. In contrast, the retrieved parameters from the low-resolution spectrum are highly sensitive to our chosen cloud model. Finally, we detect CO, H$_2$O, and CH$_4$ (volume mixing ratio of log(CH$_4$)=$-4.82\pm0.23$) in this L/T transition companion with the KPIC data. The relative molecular abundances allow us to constrain the degree of chemical disequilibrium in the atmosphere of HD 4747 B, and infer a vertical diffusion coefficient that is at the upper limit predicted from mixing length theory.