论文标题

使用知识辅助动态神经网络的6G无线网络的按需资源管理

On-Demand Resource Management for 6G Wireless Networks Using Knowledge-Assisted Dynamic Neural Networks

论文作者

Ma, Longfei, Cheng, Nan, Wang, Xiucheng, Sun, Ruijin, Lu, Ning

论文摘要

在6G无线通信网络中,按需服务供应是一个至关重要但挑战性的问题,因为新兴服务的要求大大不同,并且网络资源变得越来越异质和动态。在本文中,我们研究了按需无线资源编排问题,重点是编排决策过程的计算延迟。具体来说,我们将决策延迟延迟到优化问题。然后,提出了基于动态的神经网络(DYNN)的方法,可以根据服务要求调整模型复杂性。我们进一步建立一个知识库,代表服务要求之间的关系,可用的计算资源和资源分配绩效。通过利用知识,可以及时选择DYNN的宽度,从而进一步改善编排的性能。仿真结果表明,所提出的方案显着胜过传统的静态神经网络,并且还显示出足够的按需服务提供的灵活性。

On-demand service provisioning is a critical yet challenging issue in 6G wireless communication networks, since emerging services have significantly diverse requirements and the network resources become increasingly heterogeneous and dynamic. In this paper, we study the on-demand wireless resource orchestration problem with the focus on the computing delay in orchestration decision-making process. Specifically, we take the decision-making delay into the optimization problem. Then, a dynamic neural network (DyNN)-based method is proposed, where the model complexity can be adjusted according to the service requirements. We further build a knowledge base representing the relationship among the service requirements, available computing resources, and the resource allocation performance. By exploiting the knowledge, the width of DyNN can be selected in a timely manner, further improving the performance of orchestration. Simulation results show that the proposed scheme significantly outperforms the traditional static neural network, and also shows sufficient flexibility in on-demand service provisioning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源