论文标题
大型$ n $主要手性模型的扰动研究
Perturbative study of large $N$ principal chiral model with twisted reduction
论文作者
论文摘要
我们使用数值随机扰动理论(NSPT)计算了扭曲的还原主手性模型(TRPCM)的内部能量的前四个扰动系数。该矩阵模型具有与普通的主要手性模型(PCM)相同的$ N $限制。确实,我们验证了前三个系数与PCM系数的分析结果大致$ n $,精度为三到四个有效数字。第四个系数还与我们自己的NSPT计算相匹配,该计算在$ n $中,相应的PCM系数。对于TRPCM,有限的$ n $校正超出领先顺序的所有系数都比PCM小。我们分析了方差,以确定将计算扩展到更高阶的可行性。
We compute the first four perturbative coefficients of the internal energy for the twisted reduced principal chiral model (TRPCM) using numerical stochastic perturbation theory (NSPT). This matrix model has the same large $N$ limit as the ordinary principal chiral model (PCM) at infinite volume. Indeed, we verify that the first three coefficients match the analytic result for the PCM coefficients at large $N$ with a precision of three to four significant digits. The fourth coefficient also matches our own NSPT calculation of the corresponding PCM coefficient at large $N$. The finite-$N$ corrections to all coefficients beyond the leading order are smaller for TRPCM than for PCM. We analyze the variance to determine the feasibility of extending the calculations to higher orders.