论文标题

卷积持久性改变

Convolutional Persistence Transforms

论文作者

Solomon, Elchanan, Bendich, Paul

论文摘要

在本文中,我们考虑了通过简单复合物(例如图像和标记的图形)定义的数据的拓扑特征,这些数据是通过在计算持久性之前与各种滤镜进行卷积来获得的。将卷积过滤器视为局部基序,结果卷积的持久图描述了基序分布在简单络合物中的方式。我们称之为卷积持久性的管道扩展了拓扑的能力,可以观察此类数据中的模式。此外,我们证明(通常说)对于任何两个标记的复合物,都可以找到某种过滤器,它们会为其产生不同的持久图,以便收集所有可能的卷积持久性图是一个注入性不变的。通过表现出卷积持久性是另一种拓扑不变的持续性同源变换的特殊情况,这证明了这一点。卷积持久性的其他优势是提高稳定性,对数据依赖性矢量化的灵活性以及某些数据类型的计算复杂性降低。此外,我们还有一套实验表明,即使人们使用随机过滤器并通过仅记录其总持久性,卷积会大大提高持久性的预测能力。

In this paper, we consider topological featurizations of data defined over simplicial complexes, like images and labeled graphs, obtained by convolving this data with various filters before computing persistence. Viewing a convolution filter as a local motif, the persistence diagram of the resulting convolution describes the way the motif is distributed across the simplicial complex. This pipeline, which we call convolutional persistence, extends the capacity of topology to observe patterns in such data. Moreover, we prove that (generically speaking) for any two labeled complexes one can find some filter for which they produce different persistence diagrams, so that the collection of all possible convolutional persistence diagrams is an injective invariant. This is proven by showing convolutional persistence to be a special case of another topological invariant, the Persistent Homology Transform. Other advantages of convolutional persistence are improved stability, greater flexibility for data-dependent vectorizations, and reduced computational complexity for certain data types. Additionally, we have a suite of experiments showing that convolutions greatly improve the predictive power of persistence on a host of classification tasks, even if one uses random filters and vectorizes the resulting diagrams by recording only their total persistences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源