论文标题

记录IT:如何通过改进的参数估计来拟合活性的棕色粒子的平方平方位移

Log it: How to fit an active Brownian particle's mean squared displacement with improved parameter estimation

论文作者

Bailey, Maximilian, Sprenger, Alexander, Grillo, Fabio, Löwen, Hartmut, Isa, Lucio

论文摘要

活性布朗粒子(ABP)模型被广泛用于描述活性物质系统的动力学,例如Janus Microswimmers。特别是,ABP的均方置换(MSD)的分析表达非常有用,因为它提供了一种描述自propellice spherical spherical Brownian颗粒的基本物理学的方法。但是,通常拟合MSD方程的截断或“短期”形式,这可能导致参数估计的重大问题。此外,异方差和对ABP MSD的统计依赖性观察通常会导致标准普通最小二乘(OLS)回归将获得有偏见的估计和不可靠的置信区间的情况。在这里,我们建议使用引导参数构造构造拟合参数的置信区间,始终在短时间尺寸上始终拟合ABP的MSD的完整表达。此外,在比较不同的拟合策略之后,我们建议使用其平均对数平方位移(MLSD)提取ABP的物理参数。这些步骤提高了ABP物理特性的估计,并提供了更可靠的置信区间,这在对微武者与狭窄边界的相互作用的兴趣日益兴趣的背景下至关重要。

The active Brownian particle (ABP) model is widely used to describe the dynamics of active matter systems, such as Janus microswimmers. In particular, the analytical expression for an ABP's mean-squared-displacement (MSD) is useful as it provides a means to describe the essential physics of a self-propelled, spherical Brownian particle. However, the truncated or 'short-time' form of the MSD equation is typically fitted, which can lead to significant problems in parameter estimation. Furthermore, heteroscedasticity and the often statistically dependent observations of an ABP's MSD lead to a situation where standard ordinary least squares (OLS) regression will obtain biased estimates and unreliable confidence intervals. Here, we propose to revert to always fitting the full expression of an ABP's MSD at short timescales, using bootstrapping to construct confidence intervals of the fitted parameters. Additionally, after comparison between different fitting strategies, we propose to extract the physical parameters of an ABP using its mean logarithmic squared displacement (MLSD). These steps improve the estimation of an ABP's physical properties, and provide more reliable confidence intervals, which are critical in the context of a growing interest in the interactions of microswimmers with confining boundaries and the influence on their motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源