论文标题
与扁平歧管的内态性相关的Smale空间的不变空间
Invariants for the Smale space associated to an expanding endomorphism of a flat manifold
论文作者
论文摘要
我们研究了与(封闭连接的Riemannian)平坦歧管上扩展的内态性膨胀的内态性获得的与Smale空间相关的不变性。具体而言,相关的不变性是相关的$ C^*$ - 代数和Putnam的同源理论的$ K $ - 理论。后者与用于构建$ c^*$ - 代数的群体类固醇的群体同源性是同构。
We study invariants associated to Smale spaces obtained from an expanding endomorphism on a (closed connected Riemannian) flat manifold. Specifically, the relevant invariants are the $K$-theory of the associated $C^*$-algebras and Putnam's homology theory for Smale spaces. The latter is isomorphic to the groupoid homology of the groupoids used to construct the $C^*$-algebras.