论文标题

通过超订单相关器学习量子系统

Learning quantum systems via out-of-time-order correlators

论文作者

Schuster, Thomas, Niu, Murphy, Cotler, Jordan, O'Brien, Thomas, McClean, Jarrod R., Mohseni, Masoud

论文摘要

学习动力量子系统的性能是从核磁共振光谱到量子设备表征的应用。这种追求的核心挑战是学习强烈相互交互的系统,在这种系统中,传统的可观察物在时空迅速衰减,限制了可以从其测量中学到的信息。在这项工作中,我们向量子学习的背景(超时订单相关器)介绍了新的可观察到的物品 - 我们表明,通过在大量的时间和距离内显示信息性的物理学,可以大大提高强烈相互交互的系统的可学习性。我们确定了两种一般情况,其中超阶相关器为当地相互作用系统中的学习任务提供了重要优势:(i)当实验访问系统在空间限制下,例如,通过单个“探测”的自由度,(ii)当一个人希望表征弱互动的强度比典型的互动强度要小得多时。我们从数字上表征了各种学习问题的这些优势,并发现它们对读出的错误和脱谐性都是可靠的。最后,我们介绍了一个二进制分类任务,该任务可以在持续时间的测量值下在恒定时间内完成。在同伴论文中,我们证明,使用仅涉及时间顺序操作的任何自适应学习协议,这项任务在成倍方中很难。

Learning the properties of dynamical quantum systems underlies applications ranging from nuclear magnetic resonance spectroscopy to quantum device characterization. A central challenge in this pursuit is the learning of strongly-interacting systems, where conventional observables decay quickly in time and space, limiting the information that can be learned from their measurement. In this work, we introduce a new class of observables into the context of quantum learning -- the out-of-time-order correlator -- which we show can substantially improve the learnability of strongly-interacting systems by virtue of displaying informative physics at large times and distances. We identify two general scenarios in which out-of-time-order correlators provide a significant advantage for learning tasks in locally-interacting systems: (i) when experimental access to the system is spatially-restricted, for example via a single "probe" degree of freedom, and (ii) when one desires to characterize weak interactions whose strength is much less than the typical interaction strength. We numerically characterize these advantages across a variety of learning problems, and find that they are robust to both read-out error and decoherence. Finally, we introduce a binary classification task that can be accomplished in constant time with out-of-time-order measurements. In a companion paper, we prove that this task is exponentially hard with any adaptive learning protocol that only involves time-ordered operations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源