论文标题
黑洞以$ 4D $ ADS EINSTEIN GAUSS引力重力与Power-Yang Mills Field
Black Holes in $4D$ AdS Einstein Gauss Bonnet Gravity With Power- Yang Mills Field
论文作者
论文摘要
在本文中,我们在$ 4D $ EINSTEIN GAUSS-BONNET GRAVITY($ 4D $ EGB)的背景下,构建了一个具有电源Yang-Mills(YM)源的确切球形对称的黑洞解决方案(YM)。我们选择我们的源为$(f_ {μν}^{(a)} f^{μν(a)})^q $,其中$ q $是任意的正实数。此后,我们研究了地平线结构,热力学问题,例如热稳定性和黑洞溶液的黑洞相变。我们的重点是分析来自重力部门的净非线性效应(由于高斯式术语)以及来自$ 4 $ dimensions的量规场(Yang-Mills Field不变性)的净非线性效应。我们评估了一些扩展的热力学量,例如压力,温度,熵,以建立Smarr公式的形式和热力学的第一定律。彻底研究了热容量作为地平线半径的函数的行为,以了解黑洞溶液的热稳定性。由于YM源的非线性,存在热相变的存在/不存在的有趣现象。对于参数的某些值,我们发现该溶液表现出一阶相变,例如范德华流体。此外,我们还通过对吉布斯自由能作为温度的函数的关键分析来验证麦克斯韦的相等区域定律。此外,临界指数是得出的,并显示了接近临界点热力学数量的缩放行为的通用类别。
In this paper we construct an exact spherically symmetric black hole solution with a power Yang-Mills (YM) source in the context of $4D$ Einstein Gauss-Bonnet gravity ($4D$ EGB). We choose our source as $(F_{μν}^{(a)}F^{μν(a)})^q$, where $q$ is an arbitrary positive real number. Thereafter we study the horizon structure, thermodynamic issues like thermal stability and black hole phase transition of this black hole solution. Our focus here is to analyse the black hole space-time under the net non-linear effect coming both from the gravitational sector (due to Gauss-Bonnet term) as well as from the gauge fields (the power of Yang-Mills field invariant) in $4$-dimensions. We evaluate some extended thermodynamic quantities such as pressure, temperature, entropy in order to establish the form of the Smarr formula and the first law of thermodynamics. The behaviour of heat capacity as a function of horizon radius is thoroughly studied to understand the thermal stability of the black hole solution. An interesting phenomena of existence/ absence of thermal phase transition occur due to the nonlinearity of YM source. For some values of the parameters, we find that the solution exhibits a first-order phase transition, like a van der Waals fluid. In addition, we also verify Maxwell's equal area law numerically by crucial analysis of Gibbs free energy as a function of temperature. Moreover, the critical exponents are derived and showed the universality class of the scaling behaviour of thermodynamic quantities near criticality.