论文标题
Deligne-lusztig字符的傅里叶 - 雅各比模型和统一组的深度为零的本地下降
Fourier-Jacobi models of Deligne-Lusztig characters and depth zero local descent for unitary groups
论文作者
论文摘要
在本文中,我们推断出有限的符号组,单一组和一般线性组的Deligne-lusztig字符的傅里叶 - 雅各比模型的明确多重公式。然后,我们将这些结果应用于$ p $ - adic unital群体的明显深度零本地下降(àlasoudry and Tanay)。结果是在非脾气暴躁计划的背景下的具体示例。
In this paper, we deduce explicit multiplicity formulas of the Fourier-Jacobi model for Deligne-Lusztig characters of finite symplectic groups, unitary groups, and general linear groups. We then apply these results to deduce the explicit depth zero local descent (à la Soudry and Tanay) for $p$-adic unitary groups. The result is a concrete example in the context of non-tempered Gan-Gross-Prasad program.