论文标题
恶意软件检测的安全和牢固认知系统的设计
Design of secure and robust cognitive system for malware detection
论文作者
论文摘要
基于机器学习的恶意软件检测技术依赖于恶意软件的灰度图像,并且倾向于根据灰色图像中纹理的分布对恶意软件进行分类。尽管机器学习技术显示出的进步和有希望的结果,但攻击者可以通过生成对抗样本来利用漏洞。通过智能制作并向输入样本添加扰动来生成对抗样本。大多数基于软件的对抗性攻击和防御措施。为了防御对手,基于机器学习和灰度图像的现有恶意软件检测需要对对抗数据进行预处理。这可能会导致额外的开销,并可以延长实时恶意软件检测。因此,作为替代方案,我们探索了基于RRAM(电阻随机访问记忆)对对手的防御。因此,本文的目的是解决上述关键系统安全问题。上述挑战是通过展示提出的技术来设计安全和强大的认知系统来解决的。首先,提出了一种新的检测隐形恶意软件的技术。该技术使用恶意软件二进制图像,然后从同一图像中提取不同的功能,然后在数据集中使用不同的ML分类器。结果表明,基于提取的功能,该技术在区分恶意软件类别的类别中取得了成功。其次,我演示了对抗性攻击对具有不同学习算法和设备特征的可重构RRAM-NERMORMORMORMORMORORMORMORORMOROROMORORMORORMORORMOROROMORMOROROMOROROMORORMORORMOROROROMORMOROROMORMOROROMORMOROROMORMOROROMORORMORORMORORMORORMORORMORORMORORMORORMOROROMORMORORMORORMORORONICT的影响。我还提出了一种集成解决方案,用于使用可重构的RRAM体系结构来减轻对抗性攻击的影响。
Machine learning based malware detection techniques rely on grayscale images of malware and tends to classify malware based on the distribution of textures in graycale images. Albeit the advancement and promising results shown by machine learning techniques, attackers can exploit the vulnerabilities by generating adversarial samples. Adversarial samples are generated by intelligently crafting and adding perturbations to the input samples. There exists majority of the software based adversarial attacks and defenses. To defend against the adversaries, the existing malware detection based on machine learning and grayscale images needs a preprocessing for the adversarial data. This can cause an additional overhead and can prolong the real-time malware detection. So, as an alternative to this, we explore RRAM (Resistive Random Access Memory) based defense against adversaries. Therefore, the aim of this thesis is to address the above mentioned critical system security issues. The above mentioned challenges are addressed by demonstrating proposed techniques to design a secure and robust cognitive system. First, a novel technique to detect stealthy malware is proposed. The technique uses malware binary images and then extract different features from the same and then employ different ML-classifiers on the dataset thus obtained. Results demonstrate that this technique is successful in differentiating classes of malware based on the features extracted. Secondly, I demonstrate the effects of adversarial attacks on a reconfigurable RRAM-neuromorphic architecture with different learning algorithms and device characteristics. I also propose an integrated solution for mitigating the effects of the adversarial attack using the reconfigurable RRAM architecture.