论文标题
$ \ mathbb {z}^d $中多点相关函数的衰减
Decay of multi-point correlation functions in $\mathbb{Z}^d$
论文作者
论文摘要
我们证明了$ \ mathbb {z}^d $的多点相关范围,用于任意$ d \ geq 1 $具有对称距离,回答了Sims-Warzel \ cite {sw}和aza-bru-siqueira pedra \ cite \ cite {abp}提出的开放问题。作为应用程序,我们证明了$ \ mathbb {z}^d $上的ISING模型的多点相关界限,以及对统一局部无序系统的预期的多点动态定位,该系统提供了Bravyi-König\ cite \ cite {bk}的首次示例。
We prove multi-point correlation bounds in $\mathbb{Z}^d$ for arbitrary $d\geq 1$ with symmetrized distances, answering open questions proposed by Sims-Warzel \cite{SW} and Aza-Bru-Siqueira Pedra \cite{ABP}. As applications, we prove multi-point correlation bounds for the Ising model on $\mathbb{Z}^d$, and multi-point dynamical localization in expectation for uniformly localized disordered systems, which provides the first examples of this conjectured phenomenon by Bravyi-König \cite{BK}.