论文标题

在线视频超分辨率与卷积内核旁通移植

Online Video Super-Resolution with Convolutional Kernel Bypass Graft

论文作者

Xiao, Jun, Jiang, Xinyang, Zheng, Ningxin, Yang, Huan, Yang, Yifan, Yang, Yuqing, Li, Dongsheng, Lam, Kin-Man

论文摘要

近年来,基于深度学习的模型在视频超分辨率(VSR)方面取得了出色的性能,但是这些模型中的大多数不适用于在线视频应用程序。这些方法仅考虑失真质量,而忽略了在线应用程序的关键要求,例如低延迟和模型较低的复杂性。在本文中,我们关注在线视频传输,其中需要VSR算法来实时生成高分辨率的视频序列。为了应对此类挑战,我们提出了一种基于一种新的内核知识转移方法,称为卷积核旁路移植物(CKBG)。首先,我们设计了一个轻巧的网络结构,该结构不需要将来的帧作为输入,并节省了缓存这些帧的额外时间成本。然后,我们提出的CKBG方法通过用``核移植物''绕过原始网络来增强这种轻巧的基本模型,``核移植物''是额外的卷积内核,其中包含外部预审预周二的图像SR模型的先验知识。在测试阶段,我们通过将其转换为简单的单路结构来进一步加速移植的多支球网络。实验结果表明,我们提出的方法可以处理高达110 fps的在线视频序列,模型复杂性和竞争性SR性能非常低。

Deep learning-based models have achieved remarkable performance in video super-resolution (VSR) in recent years, but most of these models are less applicable to online video applications. These methods solely consider the distortion quality and ignore crucial requirements for online applications, e.g., low latency and low model complexity. In this paper, we focus on online video transmission, in which VSR algorithms are required to generate high-resolution video sequences frame by frame in real time. To address such challenges, we propose an extremely low-latency VSR algorithm based on a novel kernel knowledge transfer method, named convolutional kernel bypass graft (CKBG). First, we design a lightweight network structure that does not require future frames as inputs and saves extra time costs for caching these frames. Then, our proposed CKBG method enhances this lightweight base model by bypassing the original network with ``kernel grafts'', which are extra convolutional kernels containing the prior knowledge of external pretrained image SR models. In the testing phase, we further accelerate the grafted multi-branch network by converting it into a simple single-path structure. Experiment results show that our proposed method can process online video sequences up to 110 FPS, with very low model complexity and competitive SR performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源