论文标题
关于Laughlin的分数量子厅阶段的稳定性
On the stability of Laughlin's fractional quantum Hall phase
论文作者
论文摘要
提交给大型磁场的2D电子气体中的分数量子厅效应仍然是凝结物理学中最引人注目的现象之一。从历史上看,当填充因子(电子密度除以2D电子气体的磁通量量子密度)在一个逆奇数整数1/(2m +1)附近时,第一个观察到的签名是量化为量化值(2m +1)的大厅电阻(2m +1)。这是分数量子数的首次观察之一。我们对这种效果(和后代)的基本理论理解的很大一部分源自Laughlin的1983年理论,从数学物理学的角度回顾了这里。我们解释了Laughlin提出的基础和该系统的激发状态是刚性/不可压缩的液体,以及为什么这对于解释效果至关重要。
The fractional quantum Hall effect in 2D electron gases submitted to large magnetic fields remains one of the most striking phenomena in condensed matter physics. Historically, the first observed signature is a Hall resistance quantized to the value (2m+1) when the filling factor (electron density divided by magnetic flux quantum density) of a 2D electron gas is in the vicinity of an inverse odd integer 1/(2m +1). This was one of the first observation of fractional quantum numbers. A large part of our basic theoretical understanding of this effect (and descendants) originates from Laughlin's theory of 1983, reviewed here from a mathematical physics perspective. We explain in which sense Laughlin's proposed ground and excited states for the system are rigid/incompressible liquids, and why this is crucial for the explanation of the effect.