论文标题
ML-DQA的开发和验证 - 医疗保健的机器学习数据质量保证框架
Development and Validation of ML-DQA -- a Machine Learning Data Quality Assurance Framework for Healthcare
论文作者
论文摘要
机器学习和临床研究社区采用现实世界数据(RWD)的方法,包括电子健康记录中捕获的数据(EHR)捕获的数据急剧变化。虽然临床研究人员谨慎使用RWD进行临床研究,但用于医疗团队的ML会消费公共数据集,并以最少的审查来开发新算法。这项研究通过开发和验证ML-DQA来弥合这一差距,ML-DQA是基于RWD最佳实践的数据质量保证框架。 ML-DQA框架适用于两个地理位置的五个ML项目,分别是不同的医疗状况和不同的人群。在这五个项目中,共收集了247,536名患者的RWD,共有2,999项质量检查和24份质量报告。出现了五种可推广的实践:所有项目都使用类似的方法来组冗余数据元素表示;所有项目都使用自动实用程序来构建诊断和药物数据元素;所有项目都使用了共同的基于规则的转换库;所有项目都使用统一的方法将数据质量检查分配给数据元素;所有项目都使用类似的临床裁决方法。包括临床医生,数据科学家和受训者在内的平均有5.8个人参与每个项目实施ML-DQA,每个项目的平均数据元素平均被转换或响应ML-DQA。这项研究证明了ML-DQA在医疗保健项目中的重要性作用,并为团队提供了开展这些基本活动的框架。
The approaches by which the machine learning and clinical research communities utilize real world data (RWD), including data captured in the electronic health record (EHR), vary dramatically. While clinical researchers cautiously use RWD for clinical investigations, ML for healthcare teams consume public datasets with minimal scrutiny to develop new algorithms. This study bridges this gap by developing and validating ML-DQA, a data quality assurance framework grounded in RWD best practices. The ML-DQA framework is applied to five ML projects across two geographies, different medical conditions, and different cohorts. A total of 2,999 quality checks and 24 quality reports were generated on RWD gathered on 247,536 patients across the five projects. Five generalizable practices emerge: all projects used a similar method to group redundant data element representations; all projects used automated utilities to build diagnosis and medication data elements; all projects used a common library of rules-based transformations; all projects used a unified approach to assign data quality checks to data elements; and all projects used a similar approach to clinical adjudication. An average of 5.8 individuals, including clinicians, data scientists, and trainees, were involved in implementing ML-DQA for each project and an average of 23.4 data elements per project were either transformed or removed in response to ML-DQA. This study demonstrates the importance role of ML-DQA in healthcare projects and provides teams a framework to conduct these essential activities.