论文标题
异质活性粒子动力学模型中的非高斯位移分布
Non-Gaussian displacement distributions in models of heterogeneous active particle dynamics
论文作者
论文摘要
我们研究了两个模型中随机分布的扩散率和速度的效果,用于主动和被动波动的主动粒子动力学。我们证明了在这些模型中如何在长期限制中出现非高斯位移分布,包括考奇型和指数(拉普拉斯)形状。值得注意的是,对于此处考虑的活动模型,具有分布式扩散的位移分布的形状与被动扩散模型形成鲜明对比。对于主动运动模型,我们的讨论指出了主动噪声和被动噪声之间的差异。具体而言,我们证明了现有噪声的情况与社会变形虫的位移分布的测量数据非常吻合。
We study the effect of randomly distributed diffusivities and speeds in two models for active particle dynamics with active and passive fluctuations. We demonstrate how non-Gaussian displacement distributions emerge in these models in the long time limit, including Cauchy-type and exponential (Laplace) shapes. Notably the resulting shapes of the displacement distributions with distributed diffusivities for the active models considered here are in striking contrast to passive diffusion models. For the active motion models our discussion points out the differences between active- and passive-noise. Specifically, we demonstrate that the case with active-noise is in nice agreement with measured data for the displacement distribution of social amoeba.