论文标题

多环形诺亚斯:一种针对电流极值的第一转变方法

Multicyclic norias: a first-transition approach to extreme values of the currents

论文作者

Polettini, Matteo, Neri, Izaak

论文摘要

对于连续时间马尔可夫连锁店,我们证明,根据有效亲和力$ f $的概念,如果$ f <0 $ f <0 $ \ sim \ sim \ exp -f $,边缘电流的概率是$ 1 $。结果将``Noria''公式概括为多环网络。我们提供了有关有效亲和力的操作见解,并比较了几个估计器,认为停止问题可能更准确地评估系统的非平衡性质,根据当地观察者的说法。最后,我们详细介绍了与Boltzmann公式的相似性。结果基于一种建设性的第一转变方法。

For continuous-time Markov chains we prove that, depending on the notion of effective affinity $F$, the probability of an edge current to ever become negative is either $1$ if $F< 0$ else $\sim \exp - F$. The result generalizes a ``noria'' formula to multicyclic networks. We give operational insights on the effective affinity and compare several estimators, arguing that stopping problems may be more accurate in assessing the nonequilibrium nature of a system according to a local observer. Finally we elaborate on the similarity with the Boltzmann formula. The results are based on a constructive first-transition approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源